Influence of dynamic power compensation in an isothermal titration microcalorimeter.

نویسندگان

  • L García-Fuentes
  • C Barón
  • O L Mayorga
چکیده

A theoretical analysis in Laplace's transformed domain based on a power balance represents a suitable model for an isothermal titration calorimeter with dynamic power compensation, designed and implemented in our laboratory. A rigorous calibration of the injection system and the calorimetric response was also made. Using electrically generated heat pulses, two different time constants have been determined from the calorimetric transfer function and assigned to the physical parts of the calorimeter. The same was done for a protein-ligand interaction. The binding of 2'-CMP to ribonuclease A at low and high ionic strengths was used to check the apparatus and the results were compared with those obtained by other authors (Wiseman, T.; Williston, S.; Brandts, J.F.; Lung-Nan, L. Anal. Biochem. 1989, 179, 131-137). In this case, the analysis showed a different time constant for the heat source. Independently of the nature of the heat source, the calorimetric time constants obtained while working under compensation are always smaller than those corresponding to a noncompensated system. The improvement of the calorimetric response introduced by dynamic power compensation is thus explained in terms of the reduction of the time constants characteristic of the calorimeter. This theoretical model can be used to predict the shape of the thermogram for any given reaction of either known or supposed thermodynamic parameters. Therefore, the calorimetric study is extended to the other nucleotides, 2'-UMP and 5'-dUMP, which have not hitherto been reported in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of the Rigorous Transfer Function of an Isothermal Titration Microcalorimeter with Peltier Compensation

An old problem in Isothermal Titration Calorimetry is the accurate characterisation of the instrument, i.e. the determination of the instrumental transfer function. Normally, this calibration is performed electrically or through well known chemical reactions, but the transfer function parameters obtained by both methods generally do not agree: the first method normally yields smaller time const...

متن کامل

Dynamic Compensation of Electrical Power Systems Using Multilevel Voltage Source Inverter

A New Static Var Generator (SVG), using cascaded full-bridge inverters (FBI) with binary output levels and the parallel connections of two cascaded inverters by means of current sharing reactor in each phases is introduced. The new M-level inverter, where M is 2n+2 - 3, consists of only 2n single-phase full bridges for each phases. The proposed technique not only increases the current capacity ...

متن کامل

The Effectiveness of Dynamic Voltage Restorer with the Distribution Networks for Voltage Sag Compensation

This paper discusses the Dynamic voltage restorer (DVR) operation and control for Voltage sags compensation. DVR is a series connected power electronic based device that can quickly mitigate the voltage sags in the system and restore the load voltage to the pre-fault value. Voltage sag associated with faults in transmission and distribution systems, energizing of transformers, and starting of l...

متن کامل

Biological Applications of Isothermal Titration Calorimetry

     Most of the biological phenomena are influenced by intermolecular recognition and interaction. Thus, understanding the thermodynamics of biomacromolecule ligand interaction is a very interesting area in biochemistry and biotechnology. One of the most powerful techniques to obtain precise information about the energetics of (bio) molecules binding to other biological macromolecules is isoth...

متن کامل

Metal ions binding study on human growth hormone by isothermal titration calorimetric method

The interaction of hGH with some metal ions ( ) at 27°C in NaC1 solution, 50 mM was studied using Isothermal titration calorimetry. There is a set of three identical and non-interacting binding sites for binding of all these metal ions, expect . The intrinsic association equilibrium constants () are not very different for  and , and also their molar enthalpies of binding (KJ/mol for  and  KJ/mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 70 21  شماره 

صفحات  -

تاریخ انتشار 1998